Vision
We are developing a platform and an ecosystem for quantum applications, PlanQK for short. Users should be able to access a quantum app store, developers should be able to use quantum platforms easily and specialists should provide concepts that make quantum computing easily accessible.
Do classic applications still need quantum computing?
Classic applications consume more and more computing time. Currently, special hardware (graphics cards, neuromorphic chips, high-performance computing) is already being used to cover the demand for computing capacity. In the long run, however, a real "quantum leap" in computing power will be necessary if the possibilities are to be expanded.
Why use the new technology Quantum Computing now?
In the short term, so-called Noisy Intermediate-Scale Quantum Computers (NISQs) are expected, which cannot yet achieve the reliability of classical computers. But because of the immanent complexity of quantum computing, even dealing with NISQ systems is important for building up knowledge and solving initial test problems.
The Challenge: To develop applications that can benefit from quantum computers, one needs knowledge about the specific quantum hardware platforms and how to connect everything, in addition to domain expertise. This combination of skills is difficult for companies to build!
The Solution: A community of different experts who can work together through technically useful interfaces, PlanQK for short.
- Users can access a quantum AppStore and assemble or commission solutions for their business.
- Developers can easily use Quantum platforms to extend and improve their quantum algorithms.
- Specialists provide concepts that make quantum computing easily accessible even without special expertise.
Become part of the PlanQK Community
Use Cases
Modeling of energy networks - supply quality through storage arrangement
The increasing distributed energy quota in the production mix increases volatility in networks putting supply quality and end user devices at risk, increasing outages and driving utility cost. Deciding on the best placement of storage units in the network is computationally hard.
Scheduling and duty schedule optimization
Meeting the employees’ personal preferences, while fulfilling the employer’s timing and qualification requirements, legal and labor law constraints etc. and generating fair and robust shift plans is computationally difficult – especially for larger groups of employees.
Detection of anomalies and fraud in financial transactions
Fraudulent financial transactions carry the risk of high losses. Financial institutions require automated detection of anomalous transactions with high precision and low false negative rates to reduce expensive interventions. Performing this task reliably and fast on unlabeled data is challenging.
Modeling of energy networks - cost-optimized planning
The increasing decentralized energy generation and demand requires fine-grained grid operation and planning at near-optimal cost. Additionally, increasing regenerative energy sources lead to volatile supply, which needs to be balanced by committing traditional power generators. Grid planning including this unit commitment is computationally hard.
Security building blocks for digital ecosystems
Vandalism and defects in water pipes cause immense cost due to water damage. Slowly increasing damage is often detected very late (not only in times of low utilization), therefore resulting in high repair cost and long downtimes.
Water anomaly detection in public buildings
Vandalism and defects in water pipes cause immense costs due to water damage. Slowly increasing damages are often detected very late (not only in times of low utilization), which leads to high repair costs and long downtimes.
Municipal registers AI
Federal law requires administration to offer its services online to citizens by 2022. Citizens should not be required to enter data already known to some authority. For that, data must be shared across registers and individuals should be identified across them even though often no unique feature exists yet.
Dynamic Vehicle Routing Problem
The Dynamic Vehicle Routing Problem routes a fleet of cars with certain properties such as capacities in (complex) graphs like in warehouses or in cities. The task of the fleet is the transportation of dynamically ascending traffic.
Route planning
Finding an optimal route through a graph visiting each edge. Companies with large infrastructures (like for instance rail networks) need an inspection plan being monitored by an autonomous drones or other vehicles.
Prediction of material and process properties
The costs associated with design and discovery of materials and chemicals with custom-tailored properties and synthesis of candidate materials can be reduced using simulations. Simulating properties of materials and molecules from first principles is numerically challenging on classical computers (“exponential wall”).
IP Traffic Engineering
Optical Transport Layer optimization, IP traffic engineering and quantum communication network planning are disciplines to optimize the main assets of a telecommunications provider. Choosing an optimum deployment footprint helps to save costs while being able to deliver the best customer experience.
Data Driven CRM
Understanding customers from their digital footprint in the Telecommunication networks.
Industrial production lines
In almost every manufacturing or production setting, job shop scheduling problems arise. They themselves are hard to solve. Often, this is accompanied by other optimization problems that interfere with the scheduling, such as the nesting of parts in the example of a sheet metal production.
Anomaly detection in network communication
Complex attacks on the IT infrastructure compromise network security. To detect these sophisticated threats anomaly detection and will be deployed, to analyze the network flow in near real-time high precision. Machine learning will be used to amplify the visibility of possible security risks.
Capacity and circulation optimization
Based on a given railway track allocation, transportation companies need to schedule their existing vehicles to optimize the capacity utilization and ensure a trouble-free operation. Especially, if deviations from the original planning occur, a quick response is required to close the supply gaps and maintain all connections.
Multi-aircraft routing
In coordination with air traffic control organizations, trajectories are computed for aircraft (i) in the uninterrupted case and for the interference cases (ii) thunderstorm, (iii) closed runway, and (iv) closed airspace. From these calculations, a forecast of flight paths in the hourly range is derived. The transfer of path-finding algorithms to quantum computing seems promising here.
Preventive maintenance of trains
In railroad operations, state-of-the-art knowledge related to quantum-based machine learning is needed in the context of preventive maintenance plans. The event to be predicted is basically the failure of a vital component. In the case mentioned, it is power semiconductors. With conventional neural networks, good results are already obtained, measured by the misclassification probabilities. The goal of the new use case is to further reduce the misclassification probabilities with quantum assisted machine learning methods (QNN, etc.).
QKI for assisted COVID-19 reporting and decision support.
The basic idea is to use quantum computing to analyze radiological reporting data images of the lung and surrounding organs in relation to the diagnosis of Covid-19.
Quantum Rail Recovery
Public transportation networks around the world are extremely vulnerable to planned and unplanned disruptions. A minor incident or public protest on or around a passenger rail network can result in system-wide delays and outages. The delay of a single train leads to cascading effects on many other participants in the network and to large operational losses. Mathematical programming approaches to network recovery are referred to as the train driver or aircraft recovery problem.
Quantum Organic Chemistry Pipelines
The production of drugs, such as theophylline for the therapeutic treatment of lung diseases is based on the energy-efficient production of precursors (e.g., methylamine) in mostly catalytic processes. Accurate prediction of molecular properties and derived reaction rates are important fundamentals for improving energy efficiency and thus reducing costs in precursor production.
Timetable optimization for schools
The individual entities (subjects, students, teachers, classes, courses, grades, rooms as well as other resources) offer very individual conditions in schools (e.g. sports preferably in the afternoon in double lessons, ethics at the same time as catholic religion etc.) and besides the pure room and lesson planning also the allocation between students and classes/courses for optimal learning groups could play a role.
Nesting and revenue management in flexible sheet metal production
Since flexible sheet metal manufacturing is to a large extent a make-to-order business, principles of revenue management (known e.g. from airlines) can be applied. In revenue management, the best way must be found to keep capacity free from highly profitable orders and still use the capacity to its full potential, since it is not storable (e.g. seat in the airplane, machine hour in production). The biggest difference here is that the variable costs do not approach zero, so that it is not the revenue but the contribution margin that must be maximized. In addition, there are two capacity constraints in sheet metal production: Firstly, by the available machine hours, and secondly, by the sheet metal dimensions and the nesting density created by the layout.
Warehouse optimization
In production or even in the mail order business, goods have to be retrieved from or deposited in the warehouse. The planning of such warehouses is complex and therefore time-consuming, which leads to the fact that a rearrangement in the warehouse to adapt the travel times to the current production or order situation is not carried out. Machine learning can be used to detect changes in current requirements and use them to make forecasts. As a reaction to this, a foresighted re-sorting of the warehouse can be carried out. However, this is only possible when working with flexible transport systems that are controlled centrally.
QKD Network Optimization
Quantum communication networks are used to defend against the threat of quantum computers, which use Shor's algorithm to attack the confidentiality of our communication networks. QKD (quantum key distribution) systems are one possible defense strategy. But how do we plan for quantum networks on a large scale? How do we minimize the cost of a possible rollout? The goal of securing communications networks throughout Germany requires immense investment.
Flood protection
Floods are a constant source of concern and are often associated with climate change. The nature of precipitation has changed considerably as a result of climate change. Depending on the nature of the soil, some of the water seeps away and emerges in natural springs (water cycle). Water that does not percolate runs off superficially into bodies of water or into local sewage systems. There is increased overloading of sewage systems and water bodies, up to and including flood events. The necessary investments in flood protection and in wastewater systems are enormous for municipalities and water boards. Flooding due to sudden heavy rainfall events is difficult to predict as things stand, and this is particularly true away from major rivers.
Personnel management in hospitals in response to crises
By using a "QAGA (Quantum-Assisted Genetic Algorithms)" approach as the basis for a QKI application, hospitals should be able to react much more easily to massively changing circumstances in their planning. This involves reconciling shifts in staffing needs by hospitals (overall need, but also location of need) with a more or less abrupt drop in available staffing capacity (driven by waves of illness, lock-down, etc.).
Circuit planning in information processing
Effective models for the diffusion of electrons in relevant materials are used to plan circuits for processors and storage media. As circuits become smaller and approach the limits of quantum mechanics, the parameters for the effective models must be determined from quantum mechanical calculations.
Predictive analytics in population forecasting.
The provision of AI-based population development forecasts, as well as AI-based infrastructure planning, contribute significantly to efficient urban planning. In this way, better decisions can be made as to whether, for example, new development areas should be opened up (a first AI-based model for this is available) or new schools should be built. AI-based planning assistance in financial administration makes it possible to allocate future expenditures more efficiently. Similarly, AI in administrative complaint management enables more precise predictions of where (e.g., area, office, citizen service) which complaints are received and which countermeasures are effective.
Project description
Challenge
Efficient and targeted use of quantum computing in real application scenarios requires detailed knowledge and, above all, experience in handling and using corresponding technologies and concepts. For SMEs in particular, the barriers to entry are therefore high in order to position themselves on the market with novel business models and products through quantum computing.
Although there are a large number of algorithms for quantum computers, for example on websites, in textbooks and scientific publications - but which algorithm can be used in which situation and how algorithms can be executed on a manufacturer-specific quantum computer requires a comprehensive understanding of the theory and technology. Even if suitable algorithms are found, their implementation in executable programmes that deliver added value requires deep knowledge of the development environment of the respective quantum computers.
Due to the complexity and novelty of these technological trends, there is a lack of easy access to know-how, data, algorithms and experts from these fields, and especially knowledge exchange via open ecosystems and platforms.
Therefore, the formation of a broad community based on a common platform for knowledge and technology exchange for quantum computing is an opportunity to enable the economy and especially many SMEs to put both technology fields to use and to ensure access to these future key technologies.
Approach
This is exactly where the PlanQK concept comes in. The aim is to develop an open platform and ecosystem for quantum applications to create and promote a corresponding ecosystem of quantum computing (QC) specialists, developers of concrete applications as well as users, customers, service providers and consultants. The PlanQK platform thus provides the technical basis for building a quantum computing community. The central artefacts are corresponding algorithms, applications and data pools, which can come from various sources.
The PlanQK platform enables the inclusion of algorithms from sources such as the web, published articles or books. In addition to QC algorithms, data also play a central role and should be able to be disseminated and distributed via the platform. Corresponding data pools can, for example, come from publicly accessible sources or also from users and customers of the PlanQK platform. These algorithms and data pools are stored in a special database, the PlanQK Algorithm & Data Content Store.
A public community (analogous to an open source community) or specialists of the PlanQK platform operator can access this database and analyse, cleanse, unify and execute the algorithms as well as the data pools. As a result, each such quality-assured algorithm and a number of data pools are stored in the PlanQK Community Platform. The data pools are used for quality assurance and validation by enabling customers and the community to compare different algorithms, for example by using the data pools as training and test data.
Based on the quality-assured algorithms, developers can now implement these algorithms for execution on a quantum computer. These programmes, called Quantum Services, are also quality assured and stored in the PlanQK Quantum Service Store.
Customers of the PlanQK platform can search for algorithms and data there and purchase corresponding, quality-assured algorithms and data pools, or directly use those provided free of charge. Likewise, programmes that implement such algorithms, i.e. Quantum Services, can be searched for, purchased or, if applicable, consumed free of charge. If an algorithm or a data pool for a certain problem or domain is not found, or if an algorithm is not implemented by a programme, the customer can make corresponding requests to the community, service providers or even the platform operator.
If a purchase is made, the platform automatically packages the algorithm or the programme and, if necessary, the corresponding data pools and transmits them to the quantum computer, and then takes over the billing for the resources consumed.
„PlanQK offers companies of all industries and sizes a comprehensive platform for quantum computing and AI with direct access to an extensive community of experts, consultants and service providers. Together we can play a significant role in this large future market, at least in Europe and perspectively also worldwide.“
Andreas Liebing, CEO, StoneOne AG
PlanQK vs. development environments for quantum software
PlanQK follows a completely different path. First of all, PlanQK is not a development environment for quantum software. On the contrary, it is absolutely SDK neutral: The quantum software provided in PlanQK can be created with any such quantum SDK: In the figure below these SDKs are shown in the red dotted area in the bottom center. This neutrality is achieved by PlanQK's emphasis on the concept of patterns, i.e. proven solutions to recurring problems in the domain of quantum computing. By definition, the solutions provided in such patterns are implementation- and vendor-neutral. A pattern then refers to possibly different implementations created by "any" quantum SDK.
Also, realizations of applications in the field of quantum computing generally require the solution of several problems. In PlanQK however, the patterns are networked into a pattern language and complex problems are solved by passing through these networked patterns and obtaining individual solutions to the sub-problems. Furthermore, today's solutions of quantum computing problems are hybrid software, consisting of several "modules" of classical software as well as possibly several "modules" of quantum circuits. In PlanQK all these modules can run in different environments of several manufacturers and are even deployed by PlanQK.
Furthermore, PlanQK focuses on relevant use cases of the industrial partners: This way, knowledge is built up for which (sub-)problems quantum computers can realistically be used today or in a few years, and especially how this use is done [4]. The single steps of this utilization are directly supported by PlanQK. At the same time there are components in PlanQK that evaluate quantum algorithms by assessing which quantum computers are likely to be successful.
1] https://de.wikipedia.org/wiki/Software_Development_Kit
2] Frank Leymann, Johanna Barzen, Michael Falkenthal, Daniel Vietz, Benjamin Weder, et al. 2020 Quantum in the Cloud: Application Potentials and Research Opportunities. In Proceedings of the 10th International Conference on Cloud Computing and Service Science (CLOSER 2020). SciTePress, 9-24.
3] LaRose, M., 2019. overview and Comparison of Gate Level Quantum Software Platforms. arXiv:1807.02500v2.
4] Frank Leymann, Johanna Barzen (2020): The bitter truth about gate-based quantum algorithms in the NISQ era. In: Quantum Sci. Technol. 2020.